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Abstract 

Treating alkyl( $-indenyl) iron complexes In(CO), FeR (R = CH,. CH,OCH,) 
with either nucleophilic metalate Cp(CO),FeeNa+ (Cp = $-C,H,) or 
In(CO),FeeNa+ affords stable bimetallic complexes In(CO)Fe( CL-CO),Fe(In)- 
(COCH,))Na+ (3) and (In)(Cp)(CO),Fe,(COR)‘~ Nai (4, R = CH,: 9, R = 
CH20CH,). The fully characterized PPNC salts 3 and 4 (PPN = Ph,P=N=PPh,) 
both retain c&structures having terminal (7~~) acyl ligands. Compound 4 exists as a 
l/l mixture of isomers corresponding to the acetyl group at alternate iron centers: 
results of ‘H NMR magnetization transfer experiments further established that 
these isomers slowly equilibrate at room temperature. X-ray structural determina- 
tion of 4PPNt showed that it crystallizes as the isomer having the acetyl coordi- 
nated on the CpFe end. These binuclear acyl products readily fragment (1 atm CO. 
R’ X) into mononuclear acyl products, Cp(CO), FeCOCH, and Cp( CO),FeCOCH ?- 
OCH, from 4 and 9, respectively, and In(CO),FeCOCH, from 3. By-products 
include In(CO),FeR’ (R’ = CH,, CH,CH,, Ph,Sn) and, depending on the reaction 
conditions, binuclear vinylidene compounds. A reaction pathway is proposed that 
accounts (by invoking reversible $/$-In ligand shifts) for the regioselective clea- 
vage and carbonylation of 4 and 9 to their mononuclear Cp(CO)zFe-acyl products. 

- 

Carbonylating organoiron alkyl complexes FpR (Fp = ( $-Cs H 5 )(CO) z Fe; R = 
CH,, CH,CH,) to their acyl derivatives FpC(O)R requires forcing conditions [l]. 
The necessary alkyl-CO migratory-insertion step [2] must be promoted by adding 
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Lewis or proton acids [3], by incorporating electron-transfer chain catalysis [4], or 
by substituting $-indenyl (In) for Cp or PPh, for ligated CO [la]. Similar attempts 
at carbonylating FpCH,OCH, or In(CO)(L)FeCH,OCH, (L = CO, PPh,) (up to 
80 atm CO) failed [4,5], further demonstrating that the alkoxymethyl ligand does 
not migrate as readily to an ancillary carbonyl [6]. The desired alkoxyacetyl 
derivatives, available from other synthetic routes, provide templates for converting 
CO into C, (or larger) oxygenated organic molecules [7]. 

We now report a new procedure for carbonylating iron alkyl complexes 
In(C0)2FeR, (1, R = CH,; 2, R = CH,OCH,) that involves, (i) a stable bimetallic 
acyl intermediate resulting from metalate-induced alkyl-CO migration [8*], (ii) the 
presence of at least one $-In ligand on this intermediate, and (iii) its regioselective 
cleavage (1 atm CO) to mononuclear acyl compounds. 

Methyl complex In(CO),FeCH, (1) [9] reacts with either nucleophilic metalate 
In(CO),Fe-Na+ or Cp(CO),Fe-NaC in THF solution (1 h) and gives bimetallic 
acetyl complexes 3 and 4 (eqs. 1 and 2) (85%, by IR spectral monitoring). 
Metathesis of the resulting yellow-brown solutions with PPN+Cl- (PPN+ = 
Ph,=N=PPhc) afforded the fully characterized salts 3PPNf and 4PPN+ (isolated 
yields 52 and 78%, respectively) * *. Both PPN+ salts are stable in CH,Cl Z or THF 
solutions, and no reaction occurs with CO (5 atm, 8 h) [lo”]. 

IR spectra of 3PPN+ and 4PPN+ are similar: strong v(C0) absorptions occur for 
the terminal (1906 cm-‘), bridging (1702 cm-‘), and acetyl (1568 cm-‘) carbonyl 
groups. Counterion dependency of the latter absorption, in particular, is consistent 
with ion-pairing to a terminal acetyl group [8a,ll*]. Both ‘H and 13C NMR spectra 
of 3PPN+, each having two sets of non-equivalent In ring absorptions, further 
indicate the presence of one isomer in solution. NMR spectra of 4PPN+, however, 
exhibit two sets of In, Cp, and acetyl absorptions that indicate two isomers in l/l 
ratio. These isomers equilibrate slowly on the NMR time scale as determined by 
results of a ‘H NMR magnetization (spin saturation) transfer experiment [12*]. An 
X-ray crystallographic structure determination of 4PPN+ (Fig. 1) * further demon- 
strates that it crystallizes as the c&structure having a planar ($-1n)Fe group, 
although the terminal acetyl group [13] coordinates to the CpFe end. Taken 

* Reference numbers with asterisks indicate notes in the list of references. 
** Data for SPPN+: ‘H NMR (CD,C12) 6 7.76-7.10 (m, 36H, PPN+ Zn(CO)Fe: benzo+ Zn(Ac)Fe: 

benzo), 6.87 (AA’BB’, 2H, Zn(Ac)Fe: benzo), 5.10 (d, J 2.3 Hz, 2H, Zn(CO)Fe: H(1,3)), 5.03 (t, J 
2.8 Hz, lH, Zn(CO)Fe: H(2)), 4.96 (t, J 2.8 Hz, lH, Zn(Ac)Fe: H(2)), 4.23 (d, J 2.8, 2H, Zn(Ac)Fe: 
H(l,3)), 1.78 (s, 3H, CH,). (‘H)t3C NMR (CD&I,) 6 285.7 (COCH,), 277.1 (p-CO), 216.3 
(FeCO), 123.5, 122.4, 122.3, 122.0 (In: benzoCH), 108.4 (ZnFeCOCH,: C(3a,7a)), 105.3 (ZnFeCO: 
C(3a,7a)), 97.6 (ZnFeCOCH,: C(2)). 96.4 (ZnFeCO: C(2)), 78.8 (ZoFeCO: C(1.3)) 71.8 (Zn- 
FeCOCH,: C(1,3)), 42.7 (CH,). Anal. Found: C, 70.11; H, 5.43. 3PPN+.THF (l/l) calcd.: C, 
70.27; H, 5.14%. Data for 4aPPN+ +4bPPN+ (l/l): ‘H NMR (CD,CI,) 6: 7.48-7.40 (m, 34H, 
PPN + In AA’BB 4a/4b), 7.25 (AA’BB’, 2H, In 4b), 6.81 (AA’BB’, 2H, In 4a), 5.24 (t, J 2.6 Hz, In: 
H(2) 4b), 4.75 (t, J 2.6, In: H(2) 4a), 4.64 (d, J 2.6 Hz, In: H(1,3) 4b), 4.41 (s, Cp 4a), 4.27 (s, Cp 4b), 
4.25 (d, J 2.6 Hz, In: H(1,3) 4a), 1.92 (s, CH, 4b), 1.82 (s, CH, 4a). {‘H}“C NMR (CD,CI,) 
4aPPN+ +4bPPN+ (l/l): S 278.8 (a-CO, 4a/4b), 123.7, 123.4, 122.5, 122.3 (In: benzoCH 4a/4b), 
289.5 (COCH,, 4b), 284.1 (COCH,, 4a), 217.8 (FeCO, 4a), 216.2 (FeCO, 4b),107.8 (In: C(3a,7a) 4a), 
105.4 (In: C(3a,7a) 4b), 94.8 (In: C(2) 4b), 87.8 (In: C(2) 4b), 87.2 Cp (4a), 84.5 (Cp 4b), 79.5 (In: 
C&3), 4b), 75.0 (In: C(1,3) 4a), 44.7 (CH, 4b), 43.0 (CH, 4a). Anal. Found: C, 68.65; H, 5.36. 
4PPN+.THF (l/l) calcd.: C, 68.82; H, 5.18%. 
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together, these data are consistent with cis structures [14*] for 3 and 4 that have the 
acetyl ligand shuttling between the two iron ends [15*,16 *]. A p-oxyethylidene 
compound (e.g., 5 from 4) is a plausible intermediate [8d-f.181; its existence also is 
implicated as a result of derivitization studies. 

Fragmenting the binudear acetyl compounds 3 and 4 into mononuclear acetyl 
complexes with 1 atm CO and Ph,SnCl or MeI completes the carbonylation 

Fig. 1. ORTEP diagram of 4bPPN+ * drawn with 50% probability thermal ellipsoids. The [PPN+ ] 
counter-ion and hydrogen atoms are not shown. Selected structural parameters: Fe(l)-Fe(2) 2.513(2) A: 

Fe(l)-C(13) 1.935(13) A; C(13)-C(14) 1.516(20) A; C(13)-O(1) 1.218(17) A; fold angle 158.3O, 

Fe(l)-C(15)-Fe(Z)/Fe(l)-C(I6)-Fe(2); fold angle 174.8O. C(l)-iC(2)-C(3)/C(3)-C(3a)Co-C(4)-C(S)- 

C(6)-C(7a)-C(1). 

* Crystat data for InCp(CO),Fe,COCH,. PPN+. OC,H, (4bPPN + ): as brown plates by slow cooling 

of the THF/ether solution; 0.21 x0.03 x0.65 mm, orthorhombic P2,2,2, (No. 19): u 10.836(2) ,&. b 

13.161(2) A, c 35.140(7) A; Y 5011(l) A’; Z = 4; p(calcd) =1.36 g cmm7; Nicolet R,, diffractome- 

ter; v 57.4 cm-t; X(Cu-K,) 1.54178 A; ze,,, = IlOO: N,,” = 3077. (I > 30(I)) = 2356; R = 6.51. 

R, = 0.0542; heavy-atom solution, blocked cascade refinement, all non-hydrogen atoms anisotropic, 

all hydrogen atoms as idealized isotropic contributions; SHELXTL (Rev. 5.1) computer programs 

(Nicolet Corp., Madison, WI). 
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procedure. The regiochemistry further observed in cleaving the CpIn dimer 4 into 
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E-X = CH,I, Ph,SnCI, CH,CH,I 

Cp(CO),FeCOCH, (6) is especially noteworthy (Scheme 1) *. Treating 4PPNf and 
Ph,SnCl in CH,Cl, or THF solution (1 atm CO, 2 h) thus provides 6 and 
In(CO),FeSnPh, [19] (75585% yields after column chromatography) as the only 
organometallic products_ Similar work-up of the Me1 reactions with 4PPN+ in 

CH,Cl, solution (1 atm CO, 12 h) gives 6 (53% yield), In(CO),FeCH, (1) (61%), 
cis-p-ethenylidene dimer Cp(CO)Fe&CO)(p-C=CH,)Fe(CO)In (cis-7) (50%), and 
trans-7 (3%). Spectroscopic assignments of fully characterized cis-7 and truns-7 

match those for analogous bis-(CpFe)+-vinylidene compounds [Cp(CO)Fe] Z(p- 
CO)(p-C=CH,) [18]. In the absence of a CO atmosphere, 4PPN+ reacts with 
MeOSO,CF, or acetyl chloride to produce only p-vinylidene complexes (85%, as 
22/l cis-7 and tram-7) after column chromatography. Binuclear acetyl compounds 
3 and 4 therefore can be converted selectively into either mononuclear acetyl 

* Reactions between 3PPN+ and Me1 or Ph,SnCl (1 atm CO) produce similar products. Thus, 3PPN+ 
and either Me1 in THF or Ph,SnCl in THF or CH,Cl, solutions afford In(CO),FeCOCH, [9b] 

(87-94% isolated yields) and either 1 or In(CO),FeSnPh, (86-94%). In CH,CI, solution, 3PPN+ and 
Me1 (1 atm CO, 7 h), gives 1 (38% isolated yield), In(CO),FeCOCH, (39%), and the fully 

characterized [In(CO)Fe],(p,-CO)oi-CXHa) as only its cis isomer (56%). 
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complexes or dinuclear ethenylidene compounds (Scheme 1) by manipulating the 
reaction conditions. 

This carbonylation procedure is noteworthy also for carbonylating the al- 
koxymethyl ligand (eq. 3). Treating In(C0)2FeCH,0Me (2) in THF solution with 
Cp(CO),Fe-Na+ and then with Mel/l atm CO (5 h) affords FpCOCH,OMe (10) 

(43% yield after chromatography) as the only acyl complex. 
Studies in progress further address the role of the indenyl ligand in the two-step 

carbonylation procedure: metalate promoted alkyl-CO insertion and subsequent 
cleavage of the bimetallic acyl intermediate * to mononuclear acyl product. 

* Proposed mechanism for regioselective alkylation of Cpln(C0)3Fe,(COCH,) .- (4). Regioselective 

cleavage of 4 to 6 is consistent with 4b (Scheme 1) selectively ligating CO and giving 11. This ($-In) 

intermediate. analogous to (q3-ln)Fe(CO), [IO], then alkylates at iron and gives 12. Indenyl-ligand 

ring slippage back to the thermodynamically favored q5-Indenyl [17] and dimer fragmentation afford 

the observed products. The precise timing of the carbonylation, the indenyl ring slippage. and the 

alkylation (with E-X) steps remain to be determined. 
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